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BACKGROUND

During November and December 1995 the first Aerosol Characterization Experiment (ACE 1)

was carried to characterize the aerosol physical and optical properties in the clean marine atmosphere

near Tasmania in the South Pacific. As part of this effort, and with funding from this proposal, we

installed a sun photometer on the R/V Discoverer and a spectro-photometer on the NOAA C-130

aircraft

SHIP SUN PHOTOMETER

The ship sun photometer is based on a scientific grade CCD camera which is used to image

the sun with a -20 degree field of view. The camera has a filter wheel with eight filters ranging from

400 to 1020 nm. The CCD chip has fourteen bit digitization and is cooled with two thermo-electric

coolers which control the temperature to within 0.1 degree celcius. The integration time is variable

down to 10 msec time. In order to ensure no wavelength shills occur in passing through the filters,

a pin hole (-10 mm diameter) is mounted in front of the outer lens. This causes the light to pass

through only the center of the lens and straight through the filters. While the external pin hole causes

less wavelength shills, it causes a stronger roll off effect (vignetting). This is illustrated in figure 1

which shows a flat field measurement made with a spectralon placque. The flat field measurements

are made at Mauna Loa observatory where low aerosol optical depth causes the direct solar beam to

be much larger than the diffuse light and it assumed that the solar light has parallel rays. Calibration

of the CCD camera is obtained by making Langley plots measurements at the Mauna Loa

observatory. An example of the CCD Langley plot is shown in Figure 2.

In order to point the camera at the sun on a moving ship, a two axis motor is used which is

controlled by a computer. The orientation of the sun, with respect to the camera, is obtained from



thepositionof thesunin asecondfisheyecamera.Theaveragex-y positionof thesunin the fish eye

image gives the azimuth and zenith angles of the sun relative to the ship. During the ACE1

experiment, the instrument was able to track the sun successfully. Unfortunately the software had

bugs and several bits in the solar images were lost. This prevented the proper measurement of the

aerosol optical depth. Following the experiment, many hours were spent to develop robust c

subroutines which would control the CCD camera and process the images. In particular it was

necessary to carry out careful statistical studies to flag pixels with irregular response. A paper

describing the approach is currently being developed and will be submitted in the near future. We are

also developing a new approach to derive the aureole by blocking the direct solar beam with a

rotating shadowband which arm passes over both the camera and a fast response detector. When the

fast response detector senses the decrease in light due to the detector, then it sends a pulse to the

camera to make a measurement.

AIRCRAFT MEASUREMENTS

During ACE1, numerous aerosol measurements were made on the NCAR C130 aircraft

including size distributions, chemical composition and vertical distribution (LIDAR). The aircraft flew

from 30 m to 5 km altitude providing an excellent data set to test and validate optical aerosol retrieval

algorithms. In order to complement the aircraft measurements, a downward looking spectrometer

was mounted on the aircraf. The spectrometer had 250 wavelength channels ranging from 400 to

1100 nm with 7 nm FWHM. High signal to noise was maintained by auto scaling the integration time.

This allowed for good measurements of low light conditions when looking at the ocean surface and

avoided saturation when looking at highly reflective clouds. The field of view of the spectrometer was

5 degrees. Calibrations were carried using an integrating sphere looking through the aircraft window.

Cross comparisons were carried out between radiance several independant NIST traceable standards.

The final radiance values have an absolute accuracy of 6-7%. The 26 flights were processed and put

in the ACE1 archive for use by the radiation community. An example of the data is shown in Figure

3 which shows the upwelling radiance seen as the aircraft climbs and drops over two regions with

different wind speeds. The first period when the aircraft was near the surface had wind speeds of 6

m/s with significant specular reflection. The second period near the surface, the surface winds were

2.5 m/s and little variation in the surface upwelling radiance is seen. The 450 nm wavelength also

shows large variations which appear less at 550 nm and are not present at 700 nm. These spatially

varying ocean color features appear clearly both near the surface and when the aircraft is at 3.5 km

altitude.

As part of our ACE1 effort we are seeking radiative closure from the different data sets.

Figures 4 and 5 illustrate this effort. Figure 4 shows the upwelling radiance measured with the

spectrometer as the aircraft climbed and then descended back down to the surface. Taking the

difference between the upper level and surface upwelling radiance we calculate an aerosol optical

depth of 0.035 at 630 nm. This effort assumed an aerosol phase function based on the marine aerosol



modelsof PorterandClarke(1997).Figure5 showstheaerosolscatteringcoefficientcalculated
from aerosolsizedistributionsmeasuredontheaircraft.Integratingthesevalueswith heightgives
an aerosol optical depth0.033 at 630 nm and 0.038 at 500 nm. Coincident sun photmeter
measurementson theDiscovererR/Vgave0.038suggestingreasonableagreement.We arecurrently
usingtheupwellingradianceto testourabilityto derivethecolumnaerosolphasefunctionandthe
wavelengthdependanceof theupweUingradiance.Theseclosureeffortswill besubmittedin afuture
paper.
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Figure 1. A flat field image taken with our scientific grade CCD camera. The large amount of

vignetting is caused by the pin hole configuration we employ.

Figure 2. A langley plot taken at Mauna Loa observatory with a NOAA hand held sun photometer

and the CCD camera. For the CCD camera, the values of the center of the sun were averaged

together. Flat field and dark count corrections are made to the image before this determining the sun

value. Pixels which are routinely different from the others are also flagged and not used in deriving

the sun optical depth.



Figure 1. A flat field imagetakenwith our scientific grade CCD camera. The large amount of

vignetting is caused by the pin hole configuration we employ.
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Figure 2. A Langley plot taken at Mauna Loa observatory with a NOAA hand held sun photometer

and the CCD camera. For the CCD camera, the values of the center of the sun were averaged

together. Fiat field and dark count corrections are made to the image before this determining the sun

value. Pixels which are routinely different from the others are also flagged and not used in deriving

the sun optical depth.
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Figure 3. An example of the upwelling radiance measurements made on the NCAR-C 130 aircraft. The

black line shows the aircraft height and the blue, green and red lines show the measured upwelling

radiance at 450, 550 and 700 nm. The surface wind speed was 6 rn/s and 2.5 m/s the two times the

aircra_ was near the surface.
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Figure 4. The left panel shows the upwelling radiance at 630 nm. Based on the radiance difference

between the surface and 1500 m we calculate an aerosol optical depth of 0.035. The right panel

shows the aerosol scattering coefficient (500 and 630 nm) calculated from aerosol size distributions.

Integrating the scattering coefficient gives an aerosol optical depth of 0.038 at 500 nm and 0.033 at

630 nm which is good agreement with the values derived from the spectrometer.
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